Examinando por Autor "Pacherres, C.O."
Mostrando 1 - 2 de 2
Resultados por página
Opciones de ordenación
Ítem Acceso Abierto Autotrophic and heterotrophic responses of the coral Porites lutea to large amplitude internal waves(2013) Pacherres, C.O.; Schmidt, G.M.; Richter, C.Large amplitude internal waves (LAIW) cause frequent and severe changes in the physico-chemical environment of Andaman Sea coral reefs and are a potentially important source of disturbance for corals. To explore the coral response to LAIW, prey capture disposition and photosynthesis were investigated in relation to changes in seawater temperature, pH, flow speed and food availability in LAIW simulation studies under controlled laboratory conditions, using Porites lutea as a model organism. Although food presence stimulated polyp expansion, we found an overriding effect of low temperature (19 °) causing retraction of the coral polyps into their calices, particularly when pH was altered concomitantly. Decreases in pH alone, however, caused the expansion of the polyps. The exposure history of the colonies played a crucial role in coral responses: prior field exposure to LAIW yielded lower retraction levels than in LAIW-inexperienced corals, suggesting acclimatization. Low temperature (19°) exposure did not seem to influence the photosynthetic performance, but LAIW-experienced corals showed higher values of maximum dark-adapted quantum yield (Fv/Fm) of photosystem II than LAIW-inexperienced controls. Collectively, these data suggest that P. lutea, the dominant hermatypic coral in the Andaman Sea, can acclimatize to extreme changes in its abiotic environment by modulating its mixotrophic nutrition, through polyp expansion and potential feeding, as well as its photosynthetic efficiency. © 2013. Published by The Company of Biologists Ltd.Ítem Acceso Abierto Microplastics in the Antarctic marine system: an emerging area of research(Elsevier B.V., 2017) Waller, C.L.; Griffiths H.J.; Waluda, C.M.; Thorpe, S.E.; Loaiza, I.; Moreno, B.; Pacherres, C.O.; Hughes, K.A.It was thought that the Southern Ocean was relatively free of microplastic contamination; however, recent studies and citizen science projects in the Southern Ocean have reported microplastics in deep-sea sediments and surface waters. Here we reviewed available information on microplastics (including macroplastics as a source of microplastics) in the Southern Ocean. We estimated primary microplastic concentrations from personal care products and laundry, and identified potential sources and routes of transmission into the region. Estimates showed the levels of microplastic pollution released into the region from ships and scientific research stations were likely to be negligible at the scale of the Southern Ocean, but may be significant on a local scale. This was demonstrated by the detection of the first microplastics in shallow benthic sediments close to a number of research stations on King George Island. Furthermore, our predictions of primary microplastic concentrations from local sources were five orders of magnitude lower than levels reported in published sampling surveys (assuming an even dispersal at the ocean surface). Sea surface transfer from lower latitudes may contribute, at an as yet unknown level, to Southern Ocean plastic concentrations. Acknowledging the lack of data describing microplastic origins, concentrations, distribution and impacts in the Southern Ocean, we highlight the urgent need for research, and call for routine, standardised monitoring in the Antarctic marine system. © 2017