Examinando por Autor "Avila-Rodriguez, M."
Mostrando 1 - 2 de 2
Resultados por página
Opciones de ordenación
Ítem Acceso Abierto Regulation of astroglia by gonadal steroid hormones under physiological and pathological conditions(2016) Acaz-Fonseca E.; Avila-Rodriguez, M.; Garcia-Segura, L.M.; Barreto, G.E.In the last years there has been a considerable advance in the knowledge on the regulation of astrocytes by sex steroids under physiological and pathological conditions. By the activation of a variety of nuclear and membrane receptors, sex steroid hormones regulate the functions of astrocytes and their communication with other cell types in the central nervous system. Under physiological conditions astrocytes participate in the neuroendocrine and behavioral actions of gonadal steroids, as well as in the hormonal control of brain tissue homeostasis. Under pathological conditions astrocytes mediate, at least partially, the neuroprotective effects of gonadal steroid hormones; given that sex steroids modulate reactive astrogliosis and reduce the release of pro-inflammatory molecules by these cells. Given the side effects that sex steroids may have when administered systemically, a number of synthetic agonists of the receptors for gonadal steroid hormones in the nervous system have been developed, and may be considered for clinical use after brain injury as potential enhancers of the neuroprotective astrocytic functions. © 2016 Elsevier LtdÍtem Acceso Abierto Tibolone protects astrocytic cells from glucose deprivation through a mechanism involving estrogen receptor beta and the upregulation of neuroglobin expression(Elsevier Ireland Ltd, 2016) Avila-Rodriguez, M.; Garcia-Segura, L.M.; Hidalgo-lanussa, O.; Baez, E.; Gonzalez, J.; Barreto, G.E.Tibolone, a synthetic steroid used for the prevention of osteoporosis and the treatment of climacteric symptoms in post-menopausal women, may exert tissue selective estrogenic actions acting on estrogen receptors (ERs). We previously showed that tibolone protects human T98G astroglial cells against glucose deprivation (GD). In this study we have explored whether the protective effect of tibolone on these cells is mediated by ERs. Experimental studies showed that both ERα and ERβ were involved in the protection by tibolone on GD cells, being ERβ preferentially involved on these actions over ERα. Tibolone increased viability of GD cells by a mechanism fully blocked by an ERβ antagonist and partially blocked by an ERα antagonist. Furthermore, ERβ inhibition prevented the effect of tibolone on nuclear fragmentation, ROS and mitochondrial membrane potential in GD cells. The protective effect of tibolone was mediated by neuroglobin. Tibolone upregulated neuroglobin in T98G cells and primary mouse astrocytes by a mechanism involving ERβ and neuroglobin silencing prevented the protective action of tibolone on GD cells. In summary, tibolone protects T98G cells by a mechanism involving ERβ and the upregulation of neuroglobin. © 2016 Elsevier Ireland Ltd.