Artículos en prensa
URI permanente para esta colección
Examinar
Examinando Artículos en prensa por Autor "Barreto, G.E."
Mostrando 1 - 2 de 2
Resultados por página
Opciones de ordenación
Ítem Acceso Abierto Ischemic stroke and six genetic variants in CRP, EPHX2, FGA, and NOTCH3 genes: a meta-analysis(W.B. Saunders, 2016) González-Giraldo Y.; Barreto, G.E.; Fava, C.; Forero, D.A.Background: Ischemic stroke (IS) is a leading cause of death and disability worldwide. As genetic heritability for IS is estimated at about 35%-40%, the identification of genetic variants associated with IS risk is of great importance. The main objective of this study was to carry out a meta-analysis for polymorphisms in CRP, EPHX2, FGA, and NOTCH3 genes and the risk for IS. Methods: Literature search for 6 candidate polymorphisms and IS was conducted using HuGE Navigator, PubMed, and Google Scholar databases. Meta-Analyst program was used to calculate pooled odds ratios (ORs) with a random effects model. Results: Twenty-five published studies for 6 candidate polymorphisms were included: CRP-rs1800947 (5 studies), CRP-rs1205 (3 studies), EPHX2-rs751141 (5 studies), FGA-rs6050 (6 studies), NOTCH3-rs3815188 (3 studies), and NOTCH3-rs1043994 (3 studies), for a total number of 7,825 IS cases and 56,532 control subjects. We did not find significant pooled ORs (P values > .05) for any of the genetic variants evaluated in this work. Conclusions: Our meta-analysis results did not show significant associations between these 6 polymorphisms in 4 candidate genes and IS, despite the functional role of some of these single nucleotide polymorphisms (e.g., rs6050 in FGA gene). Future studies are needed to identify additional main genetic risk factors for IS in different populations. © 2016 National Stroke Association.Ítem Acceso Abierto Metabolic and inflammatory adaptation of reactive astrocytes: role of PPARs(Humana Press Inc., 2016) Iglesias, J.; Morales, L.; Barreto, G.E.Astrocyte-mediated inflammation is associated with degenerative pathologies such as Alzheimer’s and Parkinson’s diseases and multiple sclerosis. The acute inflammation and morphological and metabolic changes that astrocytes develop after the insult are known as reactive astroglia or astrogliosis that is an important response to protect and repair the lesion. Astrocytes optimize their metabolism to produce lactate, glutamate, and ketone bodies in order to provide energy to the neurons that are deprived of nutrients upon insult. Firstly, we review the basis of inflammation and morphological changes of the different cell population implicated in reactive gliosis. Next, we discuss the more active metabolic pathways in healthy astrocytes and explain the metabolic response of astrocytes to the insult in different pathologies and which metabolic alterations generate complications in these diseases. We emphasize the role of peroxisome proliferator-activated receptors isotypes in the inflammatory and metabolic adaptation of astrogliosis developed in ischemia or neurodegenerative diseases. Based on results reported in astrocytes and other cells, we resume and hypothesize the effect of peroxisome proliferator-activated receptor (PPAR) activation with ligands on different metabolic pathways in order to supply energy to the neurons. The activation of selective PPAR isotype activity may serve as an input to better understand the role played by these receptors on the metabolic and inflammatory compensation of astrogliosis and might represent an opportunity to develop new therapeutic strategies against traumatic brain injuries and neurodegenerative diseases. © 2016 Springer Science+Business Media New York